Thioredoxin 2 is involved in the oxidative stress response in Escherichia coli.

نویسندگان

  • D Ritz
  • H Patel
  • B Doan
  • M Zheng
  • F Aslund
  • G Storz
  • J Beckwith
چکیده

Two genes encoding thioredoxin are found on the Escherichia coli genome. Both of them are capable of reducing protein disulfide bonds in vivo and in vitro. The catalytic site contains a Cys-X(1)-X(2)-Cys motif in a so-called thioredoxin fold. Thioredoxin 2 has two additional pairs of cysteines in a non-conserved N-terminal domain. This domain does not appear to be important for the function of thioredoxin 2 in donating electrons to ribonucleotide reductase, 3'-phosphoadenylsulfate-reductase, or the periplasmic disulfide isomerase DsbC. Our results suggests that the two thioredoxins are equivalent for most of the in vivo functions that were tested. On the other hand, transcriptional regulation is different. The expression of trxC is regulated by the transcriptional activator OxyR in response to oxidative stress. Oxidized OxyR binds directly to the trxC promoter and induces its expression in response to elevated hydrogen peroxide levels or the disruption of one or several of the cytoplasmic redox pathways. Mutants lacking thioredoxins 1 and 2 are more resistant to high levels of hydrogen peroxide, whereas they are more sensitive to diamide, a disulfide bond-inducing agent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic analysis of thioredoxin-targeted proteins in Escherichia coli.

Thioredoxin, a ubiquitous and evolutionarily conserved protein, modulates the structure and activity of proteins involved in a spectrum of processes, such as gene expression, apoptosis, and the oxidative stress response. Here, we present a comprehensive analysis of the thioredoxin-linked Escherichia coli proteome by using tandem affinity purification and nanospray microcapillary tandem mass spe...

متن کامل

Crystallization and preliminary X-ray diffraction analysis of NADPH-dependent thioredoxin reductase I from Saccharomyces cerevisiae.

Thioredoxin reductase 1 (Trr1) from Saccharomyces cerevisiae is a member of the family of pyridine nucleotide-disulfide oxidoreductases capable of reducing the redox-active disulfide bond of the cytosolic thioredoxin 1 (Trx1) and thioredoxin 2 (Trx2). NADPH, Trr1 and Trx1 (or Trx2) comprise the thioredoxin system, which is involved in several biological processes, including the reduction of dis...

متن کامل

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Pathogenicity of Salmonella enterica in Caenorhabditis elegans Relies on Disseminated Oxidative Stress in the Infected Host

Feeding Caenorhabditis elegans with Salmonella enterica serovar Typhimurium significantly shortens the lifespan of the nematode. S. Typhimurium-infected C. elegans, stained with 2',7'-dichlorodihydrofluorescein diacetate which fluoresces upon exposure to reactive oxygen species, revealed intestinal luminal staining that along with the time of infection progressed to a strong staining in the hyp...

متن کامل

Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli.

The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 4  شماره 

صفحات  -

تاریخ انتشار 2000